
SOFTWARE TOOL ARTICLE

 Raincloud plots: a multi-platform tool for robust data

visualization [version 2; peer review: 2 approved]

Micah Allen 1-3, Davide Poggiali 4,5, Kirstie Whitaker 6, Tom Rhys Marshall7,8,
Jordy van Langen 9, Rogier A. Kievit 9-11

1Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
2Department of Psychiatry, University of Cambridge, Cambridge, UK
3Centre of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
4Department of Mathematics, University of Padova, Padova, Italy
5Padova Neuroscience Center, University of Padova, Padova, Italy
6Alan Turing Institute, London, UK
7Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
8Department of Experimental Psychology, University of Oxford, Oxford, UK
9Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, New Zealand
10Max-Planck Centre for Computational Psychiatry and Aging, UCL/MPI Berlin, London, UK
11MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK

First published: 01 Apr 2019, 4:63
https://doi.org/10.12688/wellcomeopenres.15191.1
Latest published: 21 Jan 2021, 4:63
https://doi.org/10.12688/wellcomeopenres.15191.2

v2

Abstract
Across scientific disciplines, there is a rapidly growing recognition of
the need for more statistically robust, transparent approaches to data
visualization. Complementary to this, many scientists have called for
plotting tools that accurately and transparently convey key aspects of
statistical effects and raw data with minimal distortion. Previously
common approaches, such as plotting conditional mean or median
barplots together with error-bars have been criticized for distorting
effect size, hiding underlying patterns in the raw data, and obscuring
the assumptions upon which the most commonly used statistical tests
are based. Here we describe a data visualization approach which
overcomes these issues, providing maximal statistical information
while preserving the desired ‘inference at a glance’ nature of barplots
and other similar visualization devices. These “raincloud plots” can
visualize raw data, probability density, and key summary statistics
such as median, mean, and relevant confidence intervals in an
appealing and flexible format with minimal redundancy. In this
tutorial paper, we provide basic demonstrations of the strength of
raincloud plots and similar approaches, outline potential
modifications for their optimal use, and provide open-source code for
their streamlined implementation in R, Python and Matlab (
https://github.com/RainCloudPlots/RainCloudPlots). Readers can
investigate the R and Python tutorials interactively in the browser
using Binder by Project Jupyter.

Open Peer Review

Approval Status

1 2

version 2

(revision)
21 Jan 2021

version 1
01 Apr 2019 view view

Lisa M. DeBruine , University of Glasgow,

Glasgow, UK

1.

Elena Allen , Rodin Scientific, LLC,

Albuquerque, USA

2.

Any reports and responses or comments on the

article can be found at the end of the article.

Page 1 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

https://wellcomeopenresearch.org/articles/4-63/v2
https://wellcomeopenresearch.org/articles/4-63/v2
https://orcid.org/0000-0001-9399-4179
https://orcid.org/0000-0002-2894-0825
https://orcid.org/0000-0001-8498-4059
https://orcid.org/0000-0003-2504-2381
https://orcid.org/0000-0003-0700-4568
https://doi.org/10.12688/wellcomeopenres.15191.1
https://doi.org/10.12688/wellcomeopenres.15191.2
https://github.com/RainCloudPlots/RainCloudPlots
https://wellcomeopenresearch.org/articles/4-63/v2
https://wellcomeopenresearch.org/articles/4-63/v1
https://wellcomeopenresearch.org/articles/4-63/v2#referee-response-35182
https://wellcomeopenresearch.org/articles/4-63/v2#referee-response-35184
https://orcid.org/0000-0002-7523-5539
https://orcid.org/0000-0002-4969-7844
http://crossmark.crossref.org/dialog/?doi=10.12688/wellcomeopenres.15191.2&domain=pdf&date_stamp=2021-01-21

Corresponding author: Micah Allen (micah.allen@medschl.cam.ac.uk)
Author roles: Allen M: Conceptualization, Methodology, Project Administration, Resources, Software, Supervision, Validation,
Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Poggiali D: Conceptualization, Methodology, Resources,
Software, Validation, Visualization, Writing – Review & Editing; Whitaker K: Conceptualization, Methodology, Resources, Software,
Validation, Writing – Review & Editing; Marshall TR: Conceptualization, Methodology, Resources, Software, Validation, Visualization,
Writing – Review & Editing; van Langen J: Methodology, Resources, Software, Visualization; Kievit RA: Conceptualization, Funding
Acquisition, Project Administration, Software, Supervision, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: MA is supported by a Lundbeckfonden Fellowship (R272-2017-4345), the AIAS-COFUND II fellowship programme
that is supported by the Marie Skłodowska-Curie actions under the European Union’s Horizon 2020 (Grant agreement no 754513), and
the Aarhus University Research Foundation, and thanks Lincoln Colling for insightful statistical discussions. KW is funded by the Alan
Turing Institute under the EPSRC grant EP/N510129/1. RAK is supported by the Wellcome Trust (grant number 107392/Z/15/Z).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2021 Allen M et al. This is an open access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Allen M, Poggiali D, Whitaker K et al. Raincloud plots: a multi-platform tool for robust data visualization
[version 2; peer review: 2 approved] Wellcome Open Research 2021, 4:63 https://doi.org/10.12688/wellcomeopenres.15191.2
First published: 01 Apr 2019, 4:63 https://doi.org/10.12688/wellcomeopenres.15191.1

Keywords
data visualization, raincloud plots, R, Python, Matlab, barplots

Page 2 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

mailto:micah.allen@medschl.cam.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/wellcomeopenres.15191.2
https://doi.org/10.12688/wellcomeopenres.15191.1

Introduction
Effective data visualization is key to the interpretation and communication of data analysis. Ideally a statisti-
cal plot or data graphic should balance functionality, interpretability, and complexity, all without needlessly
sacrificing aesthetics. That is to say, the perfect visualization is one which uses as little ‘ink’ as possible to capture
exactly the desired statistical inference in an intuitive and appealing format (Tufte, 1983). As concerns regarding
the need for robust, reproducible data science have grown in recent years, so too have calls for more meaningful
approaches to plotting one’s data. Here we present an open source, multi-platform tutorial for the raincloud plot
(Neuroconscience, 2018a).

A common visualization method of raw datapoints is the barplot (see Figure 1, left panel) to represent the mean
or median of some condition or group via horizontal bars (or lines) and represents uncertainty about the illustrated
parameter estimated via ‘whisker’ errorbars, usually conveying the standard error or 95% confidence interval.
This approach has been widely criticized on several counts, including: 1) it is prone to distortion (e.g., by crop-
ping of the Y-axis), 2) it fails to represent the actual data underlying relevant parameter inferences, 3) it often leads
to misleading inferences about the magnitudes of statistical differences between conditions (Weissgerber et al.,
2015) and 4) it may obscure differences in distributions (and concurrent violations of distributional assumptions
in parametric statistics). These limitations are illustrated in Figure 1, below. Indeed, criticism of this approach
has reached such a pitched fervor that a movement to “bar bar plots” (“#barbarplots,” 2016; Piccinini, 2016) has
arisen with many signees pledging to request all such plots be changed to something more informative1.

To remedy these shortcomings, a variety of visualisation approaches have been proposed, illustrated in Figure 2,
below. One simple improvement is to overlay individual observations (datapoints) beside the standard bar-plot
format, typically with some degree of randomized jitter to improve visibility (Figure 2A). Complementary to this
approach, others have advocated for more statistically robust illustrations such as boxplots (Tukey, 1970), which
display sample median alongside interquartile range. Dot plots can be used to combine a histogram-like display of

Figure 1. The trouble with barplots. Example reproduced from “Boxplots vs. Barplots” (2016) two simulated
datasets with mean = 50, sd = 25, and 1000 observations. A) a barplot and errorbars representing +/- standard
error of the mean gives the impression that the measure is equivalent between the two groups. In fact, group 1 is
drawn from an exponential distribution as seen in B) boxplots, and C) histograms. The barplot not only obscures
the underlying nature of the observations, but also hides the fact that these data are not appropriate for standard
parametric inference. See figure1.Rmd for code to generate these figures.

1 This raises the question of why such uninformative plots became widespread in the first place. Speculatively, they may simply
have been easier to produce before the advent of personal computers and associated statistical software, when plots were typi-
cally hand-drawn. Manual plotting of this type was time consuming and error-prone; simply plotting all raw data points would
have considerably increased workload and the full-scale plotting of probability distributions may have been beyond the grasp
of many researchers.

 Amendments from Version 1

The new version, considerably delayed due to the pandemic, has been expanded and improved due to the expert
comments. Most importantly, it now includes a fully functional R package, raincloudplots: https://github.com/jorvlan/
raincloudplots which allows an even easier way to create raincloudplots for common research designs. We have also
updated and cleaned up all three tutorials thanks to the many suggestions and inputs.

Any further responses from the reviewers can be found at the end of the article

REVISED

Page 3 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

https://github.com/RainCloudPlots/RainCloudPlots/blob/master/manuscript_code/figure1.Rmd
https://github.com/jorvlan/raincloudplots
https://github.com/jorvlan/raincloudplots

distribution with individual data observations (Figure 2B). In many cases, particularly when parametric statistics
are used, it is desirable to plot the distribution of observations. This can reveal valuable information about how
e.g., some condition may increase the skewness or overall shape of a distribution. In this case, the ‘violin plot’
(Figure 2C) which displays a probability density function of the data mirrored about the uninformative axis is often
preferred (Hintze & Nelson, 1998). With the advent of increasingly flexible and modular plotting tools such as
ggplot2 (Wickham, 2010; Wickham & Chang, 2008), all of the aforementioned techniques can be combined in a
complementary fashion.

Indeed, this combined approach is typically desirable as each of these visualization techniques have various
trade-offs. Simply plotting raw data can reveal valuable information about individual differences, outliers, and
unexpected patterns within the data. However, human observers are notoriously poor2 at estimating statistical
moments and distributions from raw data (Bobko & Karren, 1979; “Guess the Correlation,” 2017; Spence et al.,
2016; Zylberberg et al., 2014), and the utility of such plots can be limited when the number of observations
is large. In this case the dotplot may be advantageous, as it displays both a histogram of raw data points and the
frequency of different binned observations. On the other hand, the interpretation of dotplots depends heavily on the
choice of dot-bin and dot-size, and these plots can also become extremely difficult to read when there are many
observations. The violin plot in which the probability density function (PDF) of observations are mirrored, com-
bined with overlaid boxplots, have recently become a popular alternative. This provides both an assessment of
the data distribution and statistical inference at a glance (SIG) via overlaid boxplots3. However, there is argu-
ably little to be gained, statistically speaking, by mirroring the PDF in the violin plot, and therefore they are
violating the philosophy of minimising the “data-ink ratio” (Tufte, 1983)1.

To overcome these issues, we propose the use of the ‘raincloud plot’ (Neuroconscience, 2018a), illustrated in
Figure 3. The raincloud plot combines a wide range of visualization suggestions, and similar precursors have
been used in various publications (e.g., Ellison, 1993, Figure 2.4; Wilson et al., 2018). The plot attempts to
address the aforementioned limitations in an intuitive, modular, and statistically robust format. In essence,
raincloud plots combine a ‘split-half violin’ (an un-mirrored PDF plotted against the redundant data axis),
raw jittered data points, and a standard visualization of central tendency (i.e., mean or median) and error,
such as a boxplot. As such the raincloud plot builds on code elements from multiple developers and scientific
programming languages (Hintze & Nelson, 1998; Patil, 2018; Wickham & Chang, 2008; Wilke, 2017).

Many previous attempts have been made to produce more robust, intuitive, and transparent plots. Our goal here
is not to propose a totally novel invention, but rather to make a powerful visualization strategy freely, easily, and
transparently available across commonly used platforms. To this end, similar but distinct plotting strategies include
beanplots (Kampstra, 2008), estimation plots (Ho et al., 2018), pirateplots (Phillips, 2016), sinaplots (Sidiropoulos
et al., 2018), stripcharts (Chambers, 2017), beeswarm plots (Eklund, 2016), and many others. Moreover, there
are likely settings where rainclouds may not necessarily be ideal, such as when there is an extreme number of

Figure 2. Extant approaches to improved data plotting. A) The simplest improvement is to add jittered raw data
points to the standard boxplot and +/- standard error scheme. B) Alternatively, dotplots can be used to supplement
visualizations of central tendency and error, at the risk of added complexity due to the dependence of such plots on
choices such as bin-width and dot size. C) A popular recent alternative is the violin plot coupled with boxplots or similar.
However, this needlessly mirrors information about the redundant data axis (here, the x-axis). See figure2.Rmd for
code to generate these figures.

2 Indeed, try it yourself at http://guessthecorrelation.com/
3 See http://www.fharrell.com/post/interactive-graphics-less/ for an interactive demonstration of how raincloud-like plots can aid
minimal yet powerful inference.

Page 4 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

https://github.com/RainCloudPlots/RainCloudPlots/blob/master/manuscript_code/figure2.Rmd
http://guessthecorrelation.com/
http://www.fharrell.com/post/interactive-graphics-less/

Figure 3. Example Raincloud plot. The raincloud plot combines an illustration of data distribution (the ‘cloud’), with
jittered raw data (the ‘rain’). This can further be supplemented by adding boxplots or other standard measures of
central tendency and error. See figure3.Rmd for code to generate this figure.

(repeated measures) datapoints, or a large number of waves, that render the points or density plots confusing
rather than illuminating. Conversely, there are settings such as simple counts, proportions, and frequen-
cies when oft-dreaded barplots may be adequate tools. No data visualization tool will be ideal for all
settings, but we think raincloudplots are a new, flexible tool that could be considered in many common
scenarios. Our hope here is to offer a cross-platform, open science tool which builds upon these approaches and
makes robust and transparent data-plotting available to as wide an audience as possible.

Inference-at-a-glance is supported by adding whatever flavor of data summary measure is optimal for the data at
hand; typical examples include overlaid boxplots or other illustrations of central tendency such as mean/median
and associated confidence intervals. Depending on the analysis at hand, PDF illustration can also be replaced
with more advanced options such as posterior probability densities (i.e., as derived from Bayesian inference) or
other parameter estimates (Ho et al., 2018).

Thus, raincloud plots offer the user maximum utility and flexibility, ensuring that nothing is ‘hidden away’ and that
the reader has all information needed to assess the data, its distribution, and the appropriateness of any reported
statistical tests in a visually appealing format. Indeed, as illustrated in Figure 4, raincloud plots can reveal information
that even a boxplot plus raw data might hide away, such as a bimodal distribution which may not be readily
‘eyeballed’ from raw data points.

In terms of general interest, following their introduction raincloud plots have generated substantial enthusiasm on
social media amongst scientists from a variety of disciplines (@neuroconscience, 2018b; Neuroconscience, 2018a),
and are now available as a default option in at least one statistical plotting software (Wilke, 2017). To further
their accessibility and ease-of-use, in the following multi-platform tutorial we provide code and documentation
for the step-by-step creation and customization of raincloud plots in R, Matlab, and Python.

Code tutorials: how to make it rain
How to make it rain in R
R (https://www.r-project.org) is a multiplatform, free and open source tool widely used in the statistical com-
munity (R Core Team, 2013). Our tutorial includes an associated R-script to create the raincloud function which
complements the existing ggplot2 package (Wickham, 2010; Wickham & Chang, 2008), as well as an R-notebook
(reproduced below) which walks the user through the simulation of data, illustrates a variety of parameters that can
be user modified and shows how to get from barplots to rainclouds.

There are two ways to create raincloudplots in R: Through a series of specific easy to modify scripts, and
through our new tailored package, ‘raincloudplots’. The former provides a step-by-step walkthrough with indi-
vidual scripts which can be modified as needed. The latter provides an easy-to-use set of functions for the
most common experimental designs and data formats. The full package tutorial is available here: https://github.com/
jorvlan/raincloudplots

Page 5 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

https://github.com/RainCloudPlots/RainCloudPlots/blob/master/manuscript_code/figure3.Rmd
https://www.r-project.org/
https://github.com/RainCloudPlots/RainCloudPlots/blob/master/tutorial_R/R_rainclouds.R
https://github.com/RainCloudPlots/RainCloudPlots/blob/master/tutorial_R/raincloud_tutorial_r.Rmd
https://github.com/jorvlan/raincloudplots
https://github.com/jorvlan/raincloudplots

First, we demonstrate the individual script tutorial. The code is available at https://github.com/RainCloudPlots/
RainCloudPlots/tree/master/tutorial_R and can be run interactively in the browser at

https://mybinder.org/v2/gh/RainCloudPlots/RainCloudPlots/master?urlpath=rstudio.

This tutorial will walk you through the process of transforming your barplots into rainclouds, and also show you
how to customize your rainclouds for various options such as ordinal or repeated measures data. First, we’ll run the
included “R_rainclouds” script, which will set-up the split-half violin option in ggplot, as well as simulate some
data for our figures:

source("R_rainclouds.R")
source("summarySE.R")
source("simulateData.R")
library(cowplot)
library(readr)
width and height variables for saved plots
w = 6
h = 3

head(summary_simdat)
group N score_mean score_median sd se ci
1 Group1 250 49.45877 42.74587 25.27975 1.598832 3.148958
2 Group2 250 51.94353 52.69956 25.06328 1.585141 3.121994

The function gives us two groups of N = 250 observations each; both have similar means and SDs, but group one
is drawn from an exponential distribution. Now we’ll plot a basic barplot for our simulated data. Note that we’re

Figure 4. Raincloud plots leave little to the imagination. By replacing the redundantly mirrored probability
distribution with a boxplot and raw data-points, the raincloud plot provides the user with information both about
individual observations and patterns among them (such as striation or clustering), and overall tendencies in the
distribution. As illustrated here, even a boxplot plus raw data may hide bimodality or other crucial facets of the data.
See figure4.ipynb for code to generate these figures.

Page 6 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

https://github.com/RainCloudPlots/RainCloudPlots/tree/master/tutorial_R
https://github.com/RainCloudPlots/RainCloudPlots/tree/master/tutorial_R
https://mybinder.org/v2/gh/RainCloudPlots/RainCloudPlots/master?urlpath=rstudio
https://github.com/RainCloudPlots/RainCloudPlots/blob/master/manuscript_code/figure4.ipynb

using the ‘cowplot’ theme (https://github.com/wilkelab/cowplot) to produce simple, uncluttered plots - you
should set-up your own theme or other customization options as desired:

#Barplot
p1 <- ggplot(summary_simdat, aes(x = group, y = score_mean, fill = group))+
 geom_bar(stat = "identity", width = .8)+
 geom_errorbar(aes(ymin = score_mean - se, ymax = score_mean+se), width = .2)+
 guides(fill=FALSE)+
 ylim(0, 80)+
 ylab('Score')+xlab('Group')+theme_cowplot()+
 ggtitle("Figure R1: Barplot +/- SEM")
 ggsave('1Barplot.png', width = w, height = h)

p1

There we go - just needs some little asterisks and we’re ready to publish! Just kidding. Let’s start our first, most
basic raincloud plot like so, using the ‘geom_flat_violin’ option our function already setup for us:

#Basic plot
p2 <- ggplot(simdat,aes(x=group,y=score))+
 geom_flat_violin(position = position_nudge(x = .2, y = 0),adjust =2)+
 geom_point(position = position_jitter(width = .15), size = .25)+
 ylab('Score')+xlab('Group')+theme_cowplot()+
 ggtitle('Figure R2: Basic Rainclouds or Little Prince Plot')+
 ggsave('2basic.png', width = w, height = h)

p2

Page 7 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

https://github.com/wilkelab/cowplot

Now we can see the raw data (our ‘rain’), and the overlaid probability distribution (the ‘cloud’). Let’s make it a
bit prettier and easier to read by adding some colours. We can also use ‘coordinate flip’ to rotate the entire
plot about the x-axis, transforming our ‘little prince plots’ into true rainclouds:

#Plot with colours and coordinate flip
p3 <- ggplot(simdat,aes(x=group,y=score, fill = group))+
 geom_flat_violin(position = position_nudge(x = .2, y = 0),adjust = 2)+
 geom_point(position = position_jitter(width = .15), size = .25)+

ylab('Score')+xlab('Group')+coord_flip()+theme_cowplot()+guides(fill = FALSE)+
 ggtitle('Figure R3: The Basic Raincloud with Colour')+
 ggsave('figs/rTutorial/3pretty.png', width = w, height = h)

p3

In case you want to change the smoothing kernel used to calculate the PDFs, you can do so by altering the ‘adjust’
flag for geom_flat_violin. For example, here we’ve dropped our smoothing to give a much bumpier raincloud:

#Raincloud with reduced smoothing
p4 <- ggplot(simdat,aes(x=group,y=score, fill = group))+
 geom_flat_violin(position = position_nudge(x = .2, y = 0),adjust = .2)+
 geom_point(position = position_jitter(width = .15), size = .25)+

ylab('Score')+xlab('Group')+coord_flip()+theme_cowplot()+guides(fill = FALSE) +
 ggtitle('Figure R4: Unsmooth Rainclouds')
 ggsave('4unsmooth.png', width = w, height = h)

p4

Page 8 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

Now we need to add something to help us easily evaluate any possible differences between our groups or
conditions. To achieve this, we’ll add some boxplots to complete our raincloud plots. To get the boxplots to line up
however we like, we need to set our x-axis to a numeric value, so we can add a fixed offset:

#Rainclouds with boxplots
p5 <- ggplot(simdat,aes(x=group,y=score, fill = group))+
 geom_flat_violin(position = position_nudge(x = .25, y = 0),adjust =2)+
 geom_point(position = position_jitter(width = .15), size = .25)+
#note that here we need to set the x-variable to a numeric variable and bump it to
get the boxplots to line up with the rainclouds.
 geom_boxplot(aes(x = as.numeric(group)+0.25, y = score),outlier.shape = NA,
alpha = 0.3, width = .1, colour = "BLACK") +

ylab('Score')+xlab('Group')+coord_flip()+theme_cowplot()+guides(fill = FALSE,
colour = FALSE) +
 ggtitle("Figure R5: Raincloud Plot w/Boxplots")
 ggsave('5boxplots.png', width = w, height = h)

p5

Now we’ll make a few aesthetic tweaks. You may want to turn these on or off depending on your preferences.
We’ll take the black outline away from the plots by adding the colour = group parameter, and we’ll also change
colour palettes using the built-in colour brewer tool.

#Rainclouds with boxplots
p6 <- ggplot(simdat,aes(x=group,y=score, fill = group, colour = group))+
 geom_flat_violin(position = position_nudge(x = .25, y = 0),adjust =2, trim =
FALSE)+
 geom_point(position = position_jitter(width = .15), size = .25)+
 geom_boxplot(aes(x = as.numeric(group)+0.25, y = score),outlier.shape = NA,
alpha = 0.3, width = .1, colour = "BLACK") +

ylab('Score')+xlab('Group')+coord_flip()+theme_cowplot()+guides(fill = FALSE,
colour = FALSE) +
 scale_colour_brewer(palette = "Dark2")+
 scale_fill_brewer(palette = "Dark2")+
 ggtitle("Figure R6: Change in Colour Palette")
 ggsave('6boxplots.png', width = w, height = h)

p6

Page 9 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

Alternatively, you may prefer to simply plot mean or median with standard confidence intervals. Here we’ll
plot the mean as well as 95% confidence intervals, which we’ve calculated using the included SummarySE
function (from https://www.rdocumentation.org/packages/Rmisc/versions/1.5/topics/summarySE), by overlaying
them on of our clouds:

#Rainclouds with mean and confidence interval
p7 <- ggplot(simdat,aes(x=group,y=score, fill = group, colour = group))+
 geom_flat_violin(position = position_nudge(x = .25, y = 0),adjust =2)+
 geom_point(position = position_jitter(width = .15), size = .25)+
 geom_point(data = summary_simdat, aes(x = group, y = score_mean), position =
position_nudge(.25), colour = "BLACK")+
 geom_errorbar(data = summary_simdat, aes(x = group, y = score_mean, ymin = score_
mean-ci, ymax = score_mean+ci), position = position_nudge(.25), colour = "BLACK",
width = 0.1, size = 0.8)+

ylab('Score')+xlab('Group')+coord_flip()+theme_cowplot()+guides(fill = FALSE,
colour = FALSE) +
 scale_colour_brewer(palette = "Dark2")+
 scale_fill_brewer(palette = "Dark2")+
 ggtitle("Figure R7: Raincloud Plot with Mean Â± 95% CI")
 ggsave('7meanplot.png', width = w, height = h)

p7

Page 10 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

https://www.rdocumentation.org/packages/Rmisc/versions/1.5/topics/summarySE

If your data is discrete or ordinal you may need to manually add some jitter to improve the plot:

#Rainclouds with striated data

#Round data
simdat_round<-simdat
simdat_round$score<-round(simdat$score,0)

#Striated/grouped when no jitter applied
ap1 <- ggplot(simdat_round,aes(x=group,y=score,fill=group,col=group))+
geom_flat_violin(position = position_nudge(x = .2, y = 0), alpha = .6,adjust
=4)+geom_point(size = 1, alpha = 0.6)+ylab('Score')+scale_fill_brewer(palette =
"Dark2")+scale_colour_brewer(palette = "Dark2")+guides(fill = FALSE, col = FALSE)
+ggtitle('Striated')

#Added jitter helps
ap2 <- ggplot(simdat_round,aes(x=group,y=score,fill=group,col=group))+
geom_flat_violin(position = position_nudge(x = .2, y = 0), alpha = .4,adjust
=4)+geom_point(position=position_jitter(width = .15),size = 1, alpha =
0.4)+ylab('Score')+scale_fill_brewer(palette = "Dark2")+scale_colour_
brewer(palette = "Dark2")+guides(fill = FALSE, col = FALSE)+ggtitle('Added
jitter')

all_plot <- plot_grid(ap1, ap2, labels="AUTO")

add title to cowplot
title <- ggdraw() +
 draw_label("Figure R8: Jittering Ordinal Data",
 fontface = 'bold')

all_plot_final <- plot_grid(title, all_plot, ncol = 1, rel_heights = c(0.1, 1))
rel_heights values control title margins

ggsave('8allplot.png', width = w, height = h)
all_plot_final

Finally, in many situations you may have nested, factorial, or repeated measures data. In this case, one option is to
use plot facets to group by factor, emphasizing pairwise differences between conditions or factor levels:

Page 11 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

#Add additional factor/condition
simdat$gr2<-as.factor(c(rep('high',125),rep('low',125),rep('high',125),rep('low'
,125)))

p9 <- ggplot(simdat,aes(x=group,y=score, fill = group, colour = group))+
 geom_flat_violin(position = position_nudge(x = .25, y = 0),adjust =2, trim =
TRUE)+
 geom_point(position = position_jitter(width = .15), size = .25)+
 geom_boxplot(aes(x = as.numeric(group)+0.25, y = score),outlier.shape = NA,
alpha = 0.3, width = .1, colour = "BLACK") +

ylab('Score')+xlab('Group')+coord_flip()+theme_cowplot()+guides(fill = FALSE,
colour = FALSE) + facet_wrap(~gr2)+
 scale_colour_brewer(palette = "Dark2")+
 scale_fill_brewer(palette = "Dark2")+
 ggtitle("Figure R9: Complex Raincloud Plots with Facet Wrap")
 ggsave('9facetplot.png', width = w, height = h)

p9

As another example, we consider some simulated repeated measures data in factorial design, where two groups
are measured across three timepoints. To do so, we’ll first load in some new data:

#load the repeated measures factorial data

rep_data <- read_csv("data/repeated_measures_data.csv",
 col_types = cols(group = col_factor(levels = c("1",
 "2")), time = col_factor(levels = c("1",
 "2", "3"))))

sumrepdat <- summarySE(rep_data, measurevar = "score",
groupvars=c("group", "time"))

head(sumrepdat)
group time N score_mean score_median sd se ci
1 1 1 18 6.362222 6.670 1.658861 0.3909972 0.8249319
2 1 2 18 7.468333 7.730 1.546880 0.3646032 0.7692454
3 1 3 18 10.482778 10.455 1.060254 0.2499043 0.5272520
4 2 1 11 1.847273 1.210 2.010279 0.6061219 1.3505238
5 2 2 11 3.684545 2.920 2.135108 0.6437594 1.4343852
6 2 3 11 7.358182 7.020 2.236273 0.6742616 1.5023486

Page 12 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

Now, we’ll plot our rainclouds with boxplots again, this time adding some dodge so we can better emphasize
differences between our factors and factor levels. Note that here we need to nudge the point x-axis as a numeric
valuable, as this work around does not currently work for boxplots with multiple factors:

Rainclouds for repeated measures, continued
p10 <- ggplot(rep_data, aes(x = time, y = score, fill = group)) +
 geom_flat_violin(aes(fill = group),position = position_nudge(x = .1, y = 0),
adjust = 1.5, trim = FALSE, alpha = .5, colour = NA)+
 geom_point(aes(x = as.numeric(time)-.15, y = score, colour = group),position =
position_jitter(width = .05), size = 1, shape = 20)+
 geom_boxplot(aes(x = time, y = score, fill = group),outlier.shape = NA, alpha
= .5, width = .1, colour = "black")+
 scale_colour_brewer(palette = "Dark2")+
 scale_fill_brewer(palette = "Dark2")+
 ggtitle("Figure R10: Repeated Measures Factorial Rainclouds")
 ggsave('10repanvplot.png', width = w, height = h)
 #coord_flip()+
p10

Finally, you may want to add traditional line plots to emphasize factorial interactions and main effects. Here
we’ve plotted the mean and standard error for each cell of our design and connected these with a hashed line. There
are a lot of possible options though, so you’ll need to decide what works best for your needs:

#Rainclouds for repeated measures, additional plotting options

p11 <- ggplot(rep_data, aes(x = time, y = score, fill = group)) +
 geom_flat_violin(aes(fill = group),position = position_nudge(x = .1, y = 0),
adjust = 1.5, trim = FALSE, alpha = .5, colour = NA)+
 geom_point(aes(x = as.numeric(time)-.15, y = score, colour = group),position =
position_jitter(width = .05), size = .25, shape = 20)+
 geom_boxplot(aes(x = time, y = score, fill = group),outlier.shape = NA, alpha
= .5, width = .1, colour = "black")+
 geom_line(data = sumrepdat, aes(x = as.numeric(time)+.1, y = score_mean, group
= group, colour = group), linetype = 3)+
 geom_point(data = sumrepdat, aes(x = as.numeric(time)+.1, y = score_mean,
group = group, colour = group), shape = 18) +
 geom_errorbar(data = sumrepdat, aes(x = as.numeric(time)+.1, y = score_mean,
group = group, colour = group, ymin = score_mean-se, ymax = score_mean+se),
width = .05)+
 scale_colour_brewer(palette = "Dark2")+
 scale_fill_brewer(palette = "Dark2")+
 ggtitle("Figure R11: Repeated Measures - Factorial (Extended)")
 ggsave('11repanvplot2.png', width = w, height = h)
 #coord_flip()+

p11

Page 13 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

Here is the same plot, but with the grouping variable flipped:

#Rainclouds for repeated measures, additional plotting options

p12 <- ggplot(rep_data, aes(x = group, y = score, fill = time)) +
 geom_flat_violin(aes(fill = time),position = position_nudge(x = .1, y = 0),
adjust = 1.5, trim = FALSE, alpha = .5, colour = NA)+
 geom_point(aes(x = as.numeric(group)-.15, y = score, colour = time),position =
position_jitter(width = .05), size = .25, shape = 20)+
 geom_boxplot(aes(x = group, y = score, fill = time),outlier.shape = NA, alpha
= .5, width = .1, colour = "black")+
 geom_line(data = sumrepdat, aes(x = as.numeric(group)+.1, y = score_mean,
group = time, colour = time), linetype = 3)+
 geom_point(data = sumrepdat, aes(x = as.numeric(group)+.1, y = score_mean,
group = time, colour = time), shape = 18) +
 geom_errorbar(data = sumrepdat, aes(x = as.numeric(group)+.1, y = score_mean,
group = time, colour = time, ymin = score_mean-se, ymax = score_mean+se), width
= .05)+
 scale_colour_brewer(palette = "Dark2")+
 scale_fill_brewer(palette = "Dark2")+
 ggtitle("Figure R12: Repeated Measures - Factorial (Extended)") +
 coord_flip()
 ggsave('12repanvplot3.png', width = w, height = h)

p12

R package - raincloudplots
In addition to this step-by-step tutorial, we have developed two other tools to visualize data in rainclouds,
which are primarily suited for repeated measures data. First, we wrote an extensive GitHub tutorial called
‘open-visualizations’ (https://github.com/jorvlan/open-visualizations) which provides detailed and extensive

Page 14 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

https://github.com/jorvlan/open-visualizations

R code to create robust and transparent repeated measures visualizations, by showing the slope change for each
individual data point over time. To date, this tutorial has been cited in 15 scientific papers. However, using this
tutorial requires sufficient R programming knowledge and might therefore not be suitable for non-R experts.
Therefore, we have created a dedicated raincloudplots package (https://github.com/jorvlan/raincloudplots)
written in R. This package is tailored towards easy visualization of grouped and repeated measures data. Moreo-
ver, it also provides individually linked repeated measures visualizations, which add detail and richness to a mul-
titude of within-subject designs. Here, we have chosen to depict the two most common repeated measures
designs: 1 * 1 and 2 * 2. The following examples show you some ways to use the package for simple between
and within subject designs. The package contains more raincloudplots that you can make, please visit the
(https://github.com/jorvlan/raincloudplots) to see all the examples.

Install the package

if (!require(remotes)) {
 install.packages("remotes")
}
remotes::install_github('jorvlan/raincloudplots')

library(raincloudplots)

w_package = 3
h_package = 6

1 by 1 repeated measures
Step 1: Initialize the data-format

df_1×1 <- data_1×1(
 array_1 = iris$Sepal.Length[1:50],
 array_2 = iris$Sepal.Length[51:100],
 jit_distance = .09,
 jit_seed = 321)

Step 2: Create the plot

raincloud_1 <- raincloud_1×1_repmes(
 data = df_1×1,
 colors = (c('dodgerblue', 'darkorange')),
 fills = (c('dodgerblue', 'darkorange')),
 line_color = 'gray',
 line_alpha = .3,
 size = 1,
 alpha = .6,
 align_clouds = FALSE) +

scale_x_continuous(breaks=c(1,2), labels=c("Pre", "Post"), limits=c(0, 3)) +
 xlab("Time") +
 ylab("Score") +
 theme_classic()
ggsave('../figs/tutorial_R/package1.png', width = w_package, height = h_package)

raincloud_1

Page 15 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

https://github.com/jorvlan/raincloudplots
https://github.com/jorvlan/raincloudplots

2 by 2 repeated measures
Step 1: Initialize the data-format

df_2×2 <- data_2×2(
 array_1 = iris$Sepal.Length[1:50],
 array_2 = iris$Sepal.Length[51:100],
 array_3 = iris$Sepal.Length[101:150],
 array_4 = iris$Sepal.Length[81:130],
 labels = (c('congruent','incongruent')),
 jit_distance = .09,
 jit_seed = 321,
 spread_x_ticks = TRUE)

Step 2: Create the plot

raincloud_2 <- raincloud_2×2_repmes(
 data = df_2×2,
 colors = (c('dodgerblue', 'darkorange', 'dodgerblue', 'darkorange')),
 fills = (c('dodgerblue', 'darkorange', 'dodgerblue', 'darkorange')),
 line_color = 'gray',
 line_alpha = .3,
 size = 1,
 alpha = .6,
 spread_x_ticks = TRUE) +

scale_x_continuous(breaks=c(1,2,3,4), labels=c("Pre", "Post", "Pre", "Post"),
limits=c(0, 5)) +
 xlab("Time") +
 ylab("Score") +
 theme_classic()
ggsave('../figs/tutorial_R/package2.png', width = w_package, height = h_package)

raincloud_2

Page 16 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

That’s it! We hope you’ll be able to use this tutorial to find great illustrations for your data, and that we’ve given
you an idea of some of the different ways you can customize your raincloud plots. Next, we’ll consider how to
reproduce these steps in Python and Matlab.

How to Make it Rain in Python
Python is an open source programming language (https://www.python.org) that has recently become extremely
popular within data science and statistical machine learning. Our interactive Python tutorial can be found at the
following URL:

https://github.com/RainCloudPlots/RainCloudPlots/blob/master/tutorial_python/raincloud_tutorial_python.ipynb

The tutorial follows the footsteps of the R tutorial to guide you in the creation and customization of Raincloud
plots. The Python implementation of Raincloud Plots is a package named PtitPrince (https://github.com/pog87/
PtitPrince), written on the top of seaborn. Seaborn (https://seaborn.pydata.org) is a Python plotting library written as
an extension to the Python graphic library matplotlib (https://matplotlib.org) supporting aesthetically pleasing plots
and to work directly with pandas dataframes. The tutorial can be run interactively in the browser at:

https://mybinder.org/v2/gh/RainCloudPlots/RainCloudPlots/master?filepath=tutorial_python%2Fraincloud_tutorial_
python.ipynb.

Page 17 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

https://www.python.org/
https://github.com/RainCloudPlots/RainCloudPlots/blob/master/tutorial_python/raincloud_tutorial_python.ipynb
https://github.com/pog87/PtitPrince
https://github.com/pog87/PtitPrince
https://seaborn.pydata.org/
https://matplotlib.org/
https://mybinder.org/v2/gh/RainCloudPlots/RainCloudPlots/master?filepath=tutorial_python%2Fraincloud_tutorial_python.ipynb
https://mybinder.org/v2/gh/RainCloudPlots/RainCloudPlots/master?filepath=tutorial_python%2Fraincloud_tutorial_python.ipynb

As first step, we will load the same dataset used before and visualize the distribution of each measure as a simple
barplot with errorbars:

import pandas as pd
import ptitprince as pt
import seaborn as sns
import matplotlib.pyplot as plt
sns.set(style="whitegrid",font_scale=2)
import matplotlib.collections as clt

df = pd.read_csv ("simdat.csv", sep= ",")

sns.barplot(x = "group", y = "score", data = df, capsize= .1)

This plot can give the reader a first idea of the dataset: which group has a larger mean value, and whether this differ-
ence is likely to be significant or not. Only the mean of each group score and the standard deviation is visualized in
this plot.

To have an idea of the distribution of our dataset we can plot a “cloud”, a smoothed version of the histogram:

plotting the clouds
f, ax = plt.subplots(figsize=(7, 5))
dy="group"; dx="score"; ort="h"; pal = sns.color_palette(n_colors=1)

ax=pt.half_violinplot(x = dx, y = dy, data = df, palette = pal,
 bw = .2, cut = 0.,scale = "area", width = .6, inner = None,
 orient = ort)

Page 18 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

To have a more precise idea of the distribution and illustrate potential outliers or other patterns within the data,
we now add the “rain”, a simple monodimensional representation of the data points:

adding the rain
f, ax = plt.subplots(figsize=(7, 5))
ax=pt.half_violinplot(x = dx, y = dy, data = df, palette = pal,
 bw = .2, cut = 0.,scale = "area", width = .6, inner = None,
 orient = ort)

ax=sns.stripplot(x = dx, y = dy, data = df, palette = pal,
 edgecolor = "white",size = 3, jitter = 0, zorder = 0,
 orient = ort)

adding jitter to the rain
f, ax = plt.subplots(figsize=(7, 5))
ax=pt.half_violinplot(x = dx, y = dy, data = df, palette = pal,
 bw = .2, cut = 0.,scale = "area", width = .6, inner = None,
 orient = ort)

ax=sns.stripplot(x = dx, y = dy, data = df, palette = pal,
 edgecolor = "white",size = 3, jitter = 1, zorder = 0,
 orient = ort)

Page 19 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

Now we can set a color palette to characterize the two groups:

#adding color
pal = "Set2"
f, ax = plt.subplots(figsize=(7, 5))
ax=pt.half_violinplot(x = dx, y = dy, data = df, palette = pal,
 bw = .2, cut = 0.,scale = "area", width = .6,
 inner = None, orient = ort)

ax=sns.stripplot(x = dx, y = dy, data = df, palette = pal,
 edgecolor = "white",size = 3, jitter = 1, zorder = 0,
 orient = ort)

ax=sns.boxplot(x = dx, y = dy, data = df, color = "black",
 width = .15, zorder = 10, showcaps = True,
 boxprops = {'facecolor':'none', "zorder":10}, showfliers=True,
 whiskerprops = {'linewidth':2, "zorder":10},
 saturation = 1, orient = ort)

This gives a good idea of the distribution of the data points, but the median and the quartiles are not obvious, making
it hard to determine statistical differences at a glance. Hence, we add an “empty” boxplot to show median, quartiles
and outliers:

#adding the boxplot with quartiles
f, ax = plt.subplots(figsize=(7, 5))
ax=pt.half_violinplot(x = dx, y = dy, data = df, palette = pal,
 bw = .2, cut = 0.,scale = "area", width = .6, inner = None,
 orient = ort)

ax=sns.stripplot(x = dx, y = dy, data = df, palette = pal,
 edgecolor = "white", size = 3, jitter = 1, zorder = 0,
 orient = ort)

ax=sns.boxplot(x = dx, y = dy, data = df, color = "black",
 width = .15, zorder = 10, showcaps = True,
 boxprops = {'facecolor':'none', "zorder":10}, showfliers=True,
 whiskerprops = {'linewidth':2, "zorder":10},
 saturation = 1, orient = ort)

Page 20 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

This plot is now both informative and aesthetically pleasing but written in far too many lines of code. We can use
the function pt.Raincloud to add some automation:

#same thing with a single command: now x **must** be the categorical value
dx = "group"; dy = "score"; ort = "h"; pal = "Set2"; sigma = .2
f, ax = plt.subplots(figsize=(7, 5))

ax=pt.RainCloud(x = dx, y = dy, data = df, palette = pal,
 bw = sigma,width_viol = .6, ax = ax, orient = ort)

The ‘move’ parameter can be used to shift the rain below the boxplot, giving better visibility of the raw data in
some instances:

#moving the rain below the boxplot
dx = "group"; dy = "score"; ort = "h"; pal = "Set2"; sigma = .2
f, ax = plt.subplots(figsize=(7, 5))

=pt.RainCloud(x = dx, y = dy, data = df, palette = pal,
 bw = sigma, width_viol = .6, figsize = (7,5),
 orient = ort, move = .2)

Page 21 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

For some data, you may want to flip the orientation of the raincloud to a ‘petit prince’ plot. You can do this with
the ‘orient’ flag in the pt.RainCloud Function:

Changing orientation
dx="group"; dy="score"; ort="v"; pal = "Set2"; sigma = .2

f, ax = plt.subplots(figsize=(7, 5))
pt.RainCloud(x = dx, y = dy, data = df, palette = pal,
 bw = sigma,width_viol = .5, ax = ax, orient = ort)

Further, the raincloud function works equally well with a list or numpy.array, if you prefer to use those instead
of a dataframe input:

Usage with a list/np.array input
dx = list(df["group"]); dy = list(df["score"])
f, ax = plt.subplots(figsize=(7, 5))

=pt.RainCloud(x = dx, y = dy, palette = pal, bw = sigma,
 width_viol = .6, ax = ax, orient = ort)

Page 22 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

You can also change the smoothing kernel used to generate the probability distribution function of the data. To do
this, you adjust the sigma parameter:

#changing cloud smoothness
dx="group"; dy="score"; ort="h"; pal = "Set2"; sigma = .05
f, ax = plt.subplots(figsize=(7, 5))

pt.RainCloud(x = dx, y = dy, data = df, palette = pal,
 bw = sigma,width_viol = .6, ax = ax, orient = ort)

Finally, using the pointplot flag you can add a line connecting group mean values. This can be useful for more
complex datasets, for example repeated measures or factorial data. Below we illustrate a few different approaches
to plotting such data using rainclouds, by changing the hue, opacity, or dodge element of the individual plots:

#adding a red line connecting the groups’ mean value (useful for longitudinal
data)
dx="group"; dy="score"; ort="h"; pal = "Set2"; sigma = .2

f, ax = plt.subplots(figsize=(7, 5))
pt.RainCloud(x = dx, y = dy, data = df, palette = pal,
 bw = sigma, width_viol = .6, ax = ax,
 orient = ort, pointplot = True)

Page 23 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

As an alternative, it is possible to use the hue input for plotting different sub-groups directly over one another,
facilitating their comparison:

Hue Input for Subgroups
dx="group"; dy="score"; dhue="gr2"; ort="h" pal="Set2"; sigma = .2

f, ax = plt.subplots(figsize=(12, 5))
pt.RainCloud(x = dx, y = dy, hue = dhue, data = df,
 palette = pal, bw = sigma,width_viol = .7, ax = ax,
 orient = ort)

Another flexible option is to use Facet Grids to separate different groups or factor levels, illustrated below:

Rainclouds with FacetGrid
g = sns.FacetGrid(df, col = "gr2", height = 6)
g = g.map_dataframe(pt.RainCloud, x = "group", y = "score",
 data = df, orient = "h")
g.fig.subplots_adjust(top = 0.75)

Page 24 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

To improve the readability of this plot, we adjust the alpha-level using the associated flag (0–1 alpha intensity):

Setting alpha level
f, ax = plt.subplots(figsize=(12, 5))
pt.RainCloud(x = dx, y = dy, hue = dhue, data = df,
 palette = pal, bw = sigma, width_viol = .7, ax = ax,
 orient = ort , alpha = .65)

Rather than letting the two boxplots obscure one another, we can set the dodge flag to true, adding interpretability:

#The Dodge Flag
f, ax = plt.subplots(figsize=(12, 5))
pt.RainCloud(x = dx, y = dy, hue = dhue, data = df,
 palette = pal, bw = sigma,width_viol = .7, ax = ax,
 orient = ort , alpha = .65, dodge = True)

Page 25 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

Finally, we may want to add a traditional line-plot to our graph to aid in the detection of factorial main effects and
interactions. As an example, we’ve plotted the mean within each boxplot:

#same, with dodging and line
f, ax = plt.subplots(figsize=(12, 5))
pt.RainCloud(x = dx, y = dy, hue = dhue, data = df,
 palette = pal, bw = sigma, width_viol = .7, ax = ax,
 orient = ort , alpha = .65, dodge = True, pointplot = True)

Here is the same plot, but now with the individual observations moved below the boxplots again using the ‘move’
parameter:

#moving the rain under the boxplot

f, ax = plt.subplots(figsize=(12, 5))
pt.RainCloud(x = dx, y = dy, hue = dhue, data = df,
 palette = pal, bw = sigma, width_viol = .7, ax = ax,
 orient = ort , alpha = .65, dodge = True, pointplot = True,
 move = .2)

As our last example, we’ll consider a complex repeated measures design with two groups and three timepoints.
The goal is to illustrate our complex interactions and main-effects, while preserving the transparent nature of the
raincloud plot:

Page 26 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

Load in the repeated data
df_rep = pd.read_csv ("repeated_measures_data.csv", sep= ",",
 header = None)
df_rep.columns = ["score", "timepoint", "group"]

Plot the repeated measures data
dx = "group"; dy="score"; dhue="timepoint"
ort="h"; pal="Set2"; sigma = .2
f, ax = plt.subplots(figsize=(12, 5))

pt.RainCloud(x = dx, y = dy, hue = dhue, data = df_rep,
 palette = pal, bw = sigma, width_viol = .7, ax = ax,
 orient = ort , alpha = .65, dodge = True, pointplot = True,
 move = .2)

The function is flexible enough that you can flip the ordering of the factors around simply by changing which
variable informs the hue parameter:

Now with the group as hue
dx = "timepoint"; dy = "score"; dhue = "group"
f, ax = plt.subplots(figsize=(12, 5))
pt.RainCloud(x = dx, y = dy, hue = dhue, data = df_rep,
 palette = pal, bw = sigma, width_viol = .7, ax = ax,
 orient = ort, alpha = .65, dodge = True, pointplot = True,
 move = .2)

Page 27 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

That’s it! Hopefully this tutorial has given you an idea of some of the different ways you can produce raincloud plots
in Python. Next, we’ll describe how to produce these plots in Matlab.

How to Make it Rain in Matlab
Matlab (Mathworks Inc.) is a proprietary mathematical programming language used widely in engineering, the physi-
cal sciences, and neuroscience. The code for this tutorial can be found at:

https://github.com/RainCloudPlots/RainCloudPlots/tree/master/tutorial_matlab

Here you can also find functions to create raincloud-plots (raincloud_plot.m and rm_raincloud.m), as well as a “live
notebook” (raincloud_plots_tutorial.mlx) which walks the user through the customization of various raincloud plots.

First, we’ll set up our path and use the colorbrewer function to define some nice colour palettes:

% set up a dynamic path
% script must be run from parent directory containing all three tutorial
% directories (i.e., the one 'above' the directory 'tutorial_matlab')

pardir = pwd;
figdir = fullfile(pardir, 'figs', 'tutorial_matlab');
if ~exist('figdir', 'dir')
 mkdir(figdir);
end

% make sure functions to generate plots are on the path
codedir = fullfile(pardir, 'tutorial_matlab');
addpath(codedir);

try
 % get nice colours from colorbrewer
 % (https://uk.mathworks.com/matlabcentral/fileexchange/34087-cbrewer---
colorbrewer-schemes-for-matlab)
 [cb] = cbrewer('qual', 'Set3', 12, 'pchip');
catch
 % if you don’t have colorbrewer, accept these far more boring colours
 cb = [0.5 0.8 0.9; 1 1 0.7; 0.7 0.8 0.9; 0.8 0.5 0.4; 0.5 0.7 0.8; 1 0.8
0.5; 0.7 1 0.4; 1 0.7 1; 0.6 0.6 0.6; 0.7 0.5 0.7; 0.8 0.9 0.8; 1 1 0.4];
end

cl(1, :) = cb(4, :);
cl(2, :) = cb(1, :);

fig_position = [200 200 600 400]; % coordinates for figures

Now we’ll generate some datapoints with similar means and standard deviations; the first is drawn from a
random normal distribution and the second from a random exponential distribution. We’ll plot these same data
repeatedly in different ways further down:

n = 250;

% set a random number generator seed for reproducible results
rng(123)

d{1} = [exprnd(5, 1, n) + 15]';
d{2} = [(randn(1, n) *5) + 20]';

means = cellfun(@mean, d);
variances = cellfun(@std, d);

Page 28 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

https://github.com/RainCloudPlots/RainCloudPlots/tree/master/tutorial_matlab
https://github.com/RainCloudPlots/RainCloudPlots/blob/master/tutorial_matlab/raincloud_plot.m
https://github.com/RainCloudPlots/RainCloudPlots/blob/master/tutorial_matlab/raincloud_plots_tutorial.mlx

Let’s create a quick bar graph of these data. This is the kind of standard visualization you see in many papers, depicting
the mean of the data plus standard deviation:

f1 = figure('Position',fig_position); hold on;
h = bar(means, 'FaceColor', 'flat', 'LineWidth',.9);

h(1).CData(1, :) = cl(1, :);
h(1).CData(2, :) = cl(2, :);

e = errorbar(1:2, means, variances, '.k', 'LineWidth',.9);
set(gca, 'XTick', 1:2)
title('Bar Plot');

% save
print(f1, fullfile(figdir, '1bar.png'), '-dpng');

As you can see, this tells you something about the data, but a lot of really useful and important information is
hidden such as the ‘shape’ or distribution of the data and the raw observations themselves. A histogram nicely
shows some of what we’re missing:

f2 = figure('Position', fig_position);
subplot(1, 2, 1)
[n1, x1] = hist(d{1}, 30);
bar(x1, n1, 'FaceColor', cl(1,:), 'EdgeColor', 'k');
title('Histogram')
subplot(1, 2, 2)
[n2, x2] = hist(d{2}, 30);
bar(x2, n2, 'FaceColor', cl(2,:), 'EdgeColor', 'none');

% save
print(f2, fullfile(figdir, '2hist.png'), '-dpng');

Page 29 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

However, now we’ve lost the summary data. The raincloud plot tries to bring these elements together in one
intuitive plot. You can use the ‘raincloud_plot.m’ function accompanying this tutorial to produce these plots in
Matlab:

f3 = figure('Position', fig_position);
subplot(2, 1, 1)
h1 = raincloud_plot('d{1}, 'box_on', 1);
title('Raincloud Plot: Group 1')
set(gca,'XLim', [0 40]);
box off
subplot(2, 1, 2)
h2 = raincloud_plot(d{2}, 'box_on', 1);
title('Raincloud Plot: Group 2');
set(gca,'XLim', [0 40]);
box off

% save
print(f3, fullfile(figdir, '3Rain1.png'), '-dpng');

Page 30 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

This gives us the distribution (probability density plot), summary data (box plot), and raw observations all in
one place. Now we’ll walk you through some of the options of the function, which you can use to change vari-
ous aesthetic properties of the plot. The function only requires a vector of the data you want to plot as the input.
Additionally, there are a variety of optional flags you can call to turn the boxplots on and off, to alter (‘dodge’) the
position of the boxes and dots, and to change various aesthetics such as linewidth, colors, and so on. For
example, by setting a few different flags we can create more colorful plots:

f4 = figure('Position', fig_position);
subplot(2, 1, 1)
h1 = raincloud_plot(d{1}, 'box_on', 1);
title('Raincloud Plot: Default Plot')
set(gca,'XLim', [0 40]);
box off
subplot(2, 1, 2)
h2 = raincloud_plot(d{1}, 'box_on', 1, 'box_dodge', 1, 'box_dodge_amount',...
0, 'dot_dodge_amount', .3, 'color', cb(1,:), 'cloud_edge_col', cb(1,:));
title('Raincloud Plot: Some Aesthetic Options');
set(gca,'XLim', [0 40]);
box off

% save
print(f4, fullfile(figdir, '4Rain2.png'), '-dpng');

Page 31 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

The function returns a cell array for various figure parts, so you can also call the base function and then change
things with normal ‘set’ commands, like so:

f5 = figure('Position', fig_position);
subplot(2, 1, 1)
h1 = raincloud_plot(d{1}, 'box_on', 1);
title('Raincloud Plot: Default Plot')
set(gca,'XLim', [0 40]);
box off
subplot(2, 1, 2)
h2 = raincloud_plot(d{1}, 'box_on', 1);
title('Raincloud Plot: Some Aesthetic Options');
set(h2{1},'FaceColor', cb(1, :)) % handles 1-6 are the cloud area,
scatterpoints, and boxplot elements respectively
set(h2{2}, 'MarkerEdgeColor', 'red') %
set(gca,'XLim', [0 40]);
box off

% save
print(f5, fullfile(figdir, '5Rain3.png'), '-dpng');

Page 32 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

You can also control the smoothness of the probability density function by calling the ‘bandwidth’ parameter.
Additionally, if you have Cyril Pernet’s robust statistics toolbox on your path, you can call the ‘rash’ function for
an alternative kernel density function:

f6 = figure('Position', fig_position);
subplot(2, 1, 1)
h1 = raincloud_plot(d{1}, 'box_on', 1, 'color', cb(1,:), 'bandwidth', .2,
'density_type', 'ks');
title('Raincloud Plot: Reduced Smoothing, Kernel Density')
set(gca,'XLim', [0 40]);
box off
subplot(2,1,2)
h2 = raincloud_plot(d{1}, 'box_on', 1, 'color', cb(2,:), 'bandwidth', 1,
'density_type', 'rash');
title('Raincloud Plot: Rash Density Estimate')
set(gca,'XLim', [0 40]);
box off

% save
print(f6, fullfile(figdir, '6Rain4.png'), '-dpng');

Page 33 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

Here, we’ll use the dot and box dodge options to create an overlapping set of raincloud plots, useful for group
comparison. The function can be called repeatedly (e.g., from within a loop) - each iteration will overlay the
previous. Note that here we’re using the ‘alpha’ parameter to make the plot area see-through:

% example 1
f7 = figure('Position', fig_position);
subplot(1, 2 ,1)
h1 = raincloud_plot(d{1}, 'box_on', 1, 'color', cb(1,:), 'alpha', 0.5,...
 'box_dodge', 1, 'box_dodge_amount', .15, 'dot_dodge_amount', .15,...
 'box_col_match', 0);
h2 = raincloud_plot(d{2}, 'box_on', 1, 'color', cb(4,:), 'alpha', 0.5,...
 'box_dodge', 1, 'box_dodge_amount', .35, 'dot_dodge_amount', .35,
 'box_col_match', 0);
legend([h1{1} h2{1}], {'Group 1', 'Group 2'})
title('A) Dodge Options Example 1')
set(gca,'XLim', [0 40], 'YLim', [-.075 .15]);
box off

% example 2
subplot(1, 2, 2)
h1 = raincloud_plot(d{1}, 'box_on', 1, 'color', cb(1,:), 'alpha', 0.5,...
 'box_dodge', 1, 'box_dodge_amount', .15, 'dot_dodge_amount', .35,...
 'box_col_match', 1);
h2 = raincloud_plot(d{2}, 'box_on', 1, 'color', cb(4,:), 'alpha', 0.5,...
 'box_dodge', 1, 'box_dodge_amount', .55, 'dot_dodge_amount', .75,...
 'box_col_match', 1);
legend([h1{1} h2{1}], {'Group 1', 'Group 2'})
title('B) Dodge Options Example 2')
set(gca,'XLim', [0 40]);
box off

% save
print(f7, fullfile(figdir, '7Rain5.png'), '-dpng');

Page 34 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

You can control the jitter and position of the ‘raindrops’ in the Y-plane by calling the figure handles:

f8 = figure('Position', fig_position);
subplot(2, 1, 1)
h1 = raincloud_plot(d{1}, 'color', cb(5,:));
set(gca,'XLim',[0 40]);
h1{2}.YData = repmat(-0.1, n, 1);

subplot(2, 1, 2)
h2 = raincloud_plot(d{2}, 'color', cb(7,:));
set(gca,'XLim',[0 40]);
h2{2}.YData = repmat(-0.05,n,1);

% save
print(f8, fullfile(figdir, '8Rain6.png'), '-dpng');

Page 35 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

For the final examples, we’ll consider a more complex factorial situation where we have multiple groups and obser-
vations. To illustrate this, we’ll use a more complex implementation of rainclouds encoded in the ‘rm_raincloud.m’
function.

% grab 'repeated_measures_data.csv';
D = dlmread(fullfile(codedir, 'repeated_measures_data.csv'));

% read into cell array of the appropriate dimensions
for i = 1:3
 for j = 1:2
 data{i, j} = D(D(:, 2) == i & D(:, 3) ==j);
 end
end

% make figure
f9 = figure('Position', fig_position);
h = rm_raincloud(data, cl);
set(gca, 'YLim', [-0.3 1.6]);
title('repeated measures raincloud plot');

% save
print(f9, fullfile(figdir, '9RmRain1.png'), '-dpng');

Page 36 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

As above, ‘rm_raincloud.m’ returns a cell-array of handles to the various figure parts. We can add aesthetic options by
calling these handles.

% make figure
f10 = figure('Position', fig_position);
h = rm_raincloud(data, cl);
set(gca, 'YLim', [-0.3 1.6]);
title('repeated measures raincloud plot - some aesthetic options')

% define new colour
new_cl = [0.2 0.2 0.2];

% change one subset to new colour and alter dot size
h.p{2, 2}.FaceColor = new_cl;
h.s{2, 2}.MarkerFaceColor = new_cl;
h.m(2, 2).MarkerEdgeColor = 'none';
h.m(2, 2).MarkerFaceColor = new_cl;
h.s{2, 2}.SizeData = 300;

% save
print(f10, fullfile(figdir, '10RmRain2`.png'), '-dpng');

Page 37 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

That’s it! Now you should be ready to customize your Raincloud plots for a variety of different purposes.
This concludes our cross-platform tutorial!

Discussion
We hope that our tutorials demonstrate the flexibility of raincloud plots for visualizing data. Raincloud plots build
on a rich tradition of data graphics, enabling the user to visualize key parameters for statistical inference in a trans-
parent an aesthetically appealing fashion. In this sense, Rainclouds are part of a wider family of plotting tools
such as beeswarms (Eklund, 2016), strip plots (Tukey, 1970), and estimation plots (Ho et al., 2018).

Indeed, our goal is not to argue for the superiority or novelty of raincloud plots over these and other complemen-
tary methods. Our focus is on providing a robust cross-platform tool for creating transparent plots. In general,
the modularity of the raincloud plot is a strength, and we encourage the user to think carefully about the
choice of individual elements (clouds, rain, & confidence intervals) depending on the particularities of their data.

It is worth mentioning that here we envision these three aspects of the raincloud plots as sub-serving particular
statistical goals. In our examples, the probability distributions depicted by the split-half violin plot (‘clouds’)
illustrate the sample variance. As such they are excellent tools for assessing how data are distributed and check-
ing assumptions (i.e., violations of normality). Considering this, we caution against the use of clouds in this
form for statistical inference at a glance, which is better served by comparing some parameter estimates in rela-
tion to their uncertainty. Users who wish to use probability distributions for inference should instead consider a
more suitable approach such as estimation plots, or by plotting a smoothed histogram of bootstrapped parameter
estimates, or simply by plotting rainclouds with boxplots and/or confidence intervals, as we have done in our
tutorial examples. The code provided with this tutorial makes it easy to implement whatever histogram function
best suits the needs of the user, simply by substituting the PDF estimation function.

Additionally, at first glance it may seem redundant to plot both raw datapoints (‘rain’) and data distributions
(‘clouds’). However, we put forth that plotting both offers several advantages. First, plotting raw datapoints
can enable the automated (i.e., machine-readable) recovery of data from plots even when the data under-
lying the plot has been lost. Second, plotting raw data can facilitate the identification of unexpected pat-
terns within the data, such as ordinality or outliers, which may not be readily apparent from a probability

Page 38 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

distribution or box-plot alone. As such we recommend the combination of raw data plots and smoothed
distributions (however estimated) wherever possible.

In the spirit of open science and supporting each other in improving our data visualisations, we invite readers
to contribute their own variations and extensions directly to our GitHub repository (https://github.com/Rain-
CloudPlots/RainCloudPlots). Directions on how to contribute can be found in our contributing guidelines. We
are particularly indebted to the Binder team (Jupyter et al., 2018), part of Project Jupyter (http://jupyter.org),
whose tool allows all users to explore the R and Python examples interactively from the browser.

Preprints, Pull Requests and the value of community science
This manuscript was originally published as a preprint on the Peerj platform (https://doi.org/10.7287/peerj.
preprints.27137v1). The eight months since have illustrated the remarkable potential of new publishing
infrastructure and landscape make the process of publishing scientific content faster, better and more collabo-
ratively. We here outline just a few of the positives from doing so, and hope this may serve to encourage others.
Firstly, posting the manuscript as preprint has vastly widened the reach. To date (March 2019) our preprint was
viewed 9803 times, with 6309 downloads. However, views and downloads alone don’t necessarily entail engage-
ment. Since publication the preprint alone has already been cited 18 times. Moreover, in depth engagement
has gone well beyond mere citations. Several individuals have created their own useful tutorials, summarizing
our paper and asking useful questions, posted constructive criticism, discussed raincloud plots as part of various
plotting alternatives, created a shiny app, wrote an accessible tutorial using native R datasets, a new package,
creating various animated interactive visualisations (github here), used to illustrate the Binder format and used
in more informal blogposts on e.g. superforecasting. Our codebase itself received feedback through various
avenues including formal pull requests on github, comments on the preprint, twitter replies and email. In this
new version of our paper we have tried our best to integrate all these suggestions and comments, which without
fail have improved the usability of our code.

Social media, specifically twitter, provided the central hub where all these benefits coalesced. The paper has
been tweeted at least 750 times, with an estimated reach of up to 1,500,000 total followers, and as such is the
principal driver for the engagement our preprint has received. This engagement has yielded invaluable feedback,
comments, and suggestions, and were even lucky enough to track down the first instance of an early precursor
of the raincloud plot (Ellison, 1993). Moreover, the paper itself was inspired by a twitter discussion, and brings
together co-authors who have never met in person. Together, these interactions illustrate the fundamentally two-
way street of new publishing models, which facilitate access without paywalls and allow for near instantaneous
improvements to ongoing work.

Conclusion
The future of data science lies in reproducible, robust methods that communicate our results to as wide of an
audience as possible. We hope that raincloud plots will help you to better understand and communicate your own
data-analysis. In the present paper, we’ve outlined some of the strengths of these plots compared to traditional meth-
ods such as bar or violin-plots. Using the attached code and tutorials, this paper opens up the raincloud plot to a
wide variety of scientists in a multitude of disciplines.

Software availability
Code available from: https://github.com/RainCloudPlots/RainCloudPlots

Archived code as at time of publication: http://doi.org/10.5281/zenodo.1402959 (Allen et al., 2018).

License: MIT

Acknowledgements
The authors wish to thank Jon Roiser who suggested the name “raincloud plots” and the many scientists and
software engineers that wrote code upon which this tutorial builds. MA thanks Lincoln Colling for insightful
discussions regarding raincloud plots and statistical inference.

Page 39 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

https://github.com/RainCloudPlots/RainCloudPlots
https://github.com/RainCloudPlots/RainCloudPlots
https://github.com/RainCloudPlots/RainCloudPlots/blob/master/CONTRIBUTING.md
http://jupyter.org/
https://doi.org/10.7287/peerj.preprints.27137v1
https://doi.org/10.7287/peerj.preprints.27137v1
https://prelights.biologists.com/highlights/raincloud-plots-multi-platform-tool-robust-data-visualization/
https://prelights.biologists.com/highlights/raincloud-plots-multi-platform-tool-robust-data-visualization/
https://twitter.com/T_Weissgerber/status/1033992505539420160
https://helenajambor.wordpress.com/2018/08/28/pick-n-mix-plots/
https://helenajambor.wordpress.com/2018/08/28/pick-n-mix-plots/
https://gabrifc.shinyapps.io/raincloudplots/
https://www.kaggle.com/sbajew/raincloud-plots-iris-data
https://github.com/samhforbes/PupillometryR
https://twitter.com/page_eco/status/1064891967077789703
https://gist.github.com/ajstewartlang/89dcdf01c4512a213141a16e9243626d
https://twitter.com/kirstie_j/status/1098907285307486209
https://www.balancelegalcapital.com/litigation-superforecasting-miscommunication/
https://github.com/RainCloudPlots/RainCloudPlots
https://www.altmetric.com/details/46960395/twitter
https://github.com/RainCloudPlots/RainCloudPlots
http://dx.doi.org/10.5281/zenodo.1402959

References

 Allen M, Poggiali D, Whitaker K, et al.: RainCloudPlots tutorials
and codebase (Version v1.0). Zenodo. 2018.
http://www.doi.org/10.5281/zenodo.1402959

 #barbarplots. 2016.
Reference Source

 Bobko P, Karren R: The Perception of Pearson Product Moment
Correlations from Bivariate Scatterplots. Pers Psychol. 1979;
32(2): 313–325.
Publisher Full Text

 Chambers JM: Graphical Methods for Data Analysis. Chapman
and Hall/CRC. 2017.
Publisher Full Text

 Eklund A: beeswarm: the bee swarm plot, an alternative to
stripchart. R package version 0.2.3. 2016.
Reference Source

 Ellison AM: Exploratory data analysis and graphic display.
Design and Analysis of Ecological Experiments. 1993; 14–45.
Reference Source

 Guess the Correlation. In Wikipedia. 2017.
Reference Source

 Hintze JL, Nelson RD: Violin plots: a box plot-density trace
synergism. Am Stat. 1998; 52(2): 181–184.
Publisher Full Text

 Ho J, Tumkaya T, Aryal S, et al.: Moving beyond P values:
Everyday data analysis with estimation plots. bioRxiv. 2018.
Publisher Full Text

 Jupyter P, Bussonnier M, Forde J, et al.: Binder 2.0 - Reproducible,
interactive, sharable environments for science at scale.
In F. Akici, D. Lippa, D. Niederhut, & M. Pacer (Eds.), Proceedings of
the 17th Python in Science Conference. 2018; 113–120.
Publisher Full Text

 Kampstra P: Beanplot: A boxplot alternative for visual
comparison of distributions. J Stat Softw. 2008; 28.
Publisher Full Text

 Neuroconscience: Introducing Raincloud Plots! 2018a.
Reference Source

 neuroconscience: Introducing Raincloud Plots! 2018b.
Reference Source

 Patil I: ggstatsplot: “ggplot2” Based Plots with Statistical
Details. CRAN. 2018.
Reference Source

 Phillips N: The pirate plot (2.0)—the RDI plotting choice of R
pirates. R Bloggers. 2016.
Reference Source

 Piccinini P: Boxplots vs. Barplots. 2016.
Reference Source

 Sidiropoulos N, Sohi SH, Pedersen TL, et al.: SinaPlot: an
enhanced chart for simple and truthful representation of
single observations over multiple classes. J Comput Graph Stat.
2018; 27(3): 673–676.
Publisher Full Text

 Spence ML, Dux PE, Arnold DH: Computations underlying
confidence in visual perception. J Exp Psychol Hum Percept
Perform. 2016; 42(5): 671–682.
PubMed Abstract | Publisher Full Text

 Team RC: R: A language and environment for statistical
computing. 2013.

 Tufte ER: The Visual Display of Quantitative Information.
(Reprinted Ed edition). Cheshire, Conn: Graphics Press USA. 1983.
Reference Source

 Tukey JW: Exploratory Data Analysis, limited preliminary
edition, three volumes. Reading: Addison-Wesley. 1970; 71:
293–316.

 Weissgerber TL, Milic NM, Winham SJ, et al.: Beyond bar and line
graphs: time for a new data presentation paradigm. PLoS Biol.
2015; 13(4): e1002128.
PubMed Abstract | Publisher Full Text | Free Full Text

 Wickham H: A layered grammar of graphics. J Comput Graph
Stat. 2010; 19(1): 3–28.
Publisher Full Text

 Wickham H, Chang W: ggplot2: An implementation of the
Grammar of Graphics. R Package Version 0.7. 2008.

 Wilke C: Ggridges: Ridgeline plots in’ggplot2’. R Package Version
0.4.1. 2017.
Reference Source

 Wilson AM, Hubel TY, Wilshin SD, et al.: Biomechanics of
predator-prey arms race in lion, zebra, cheetah and impala.
Nature. 2018; 554(7691): 183–188.
PubMed Abstract | Publisher Full Text

 Zylberberg A, Roelfsema PR, Sigman M: Variance misperception
explains illusions of confidence in simple perceptual
decisions. Conscious Cogn. 2014; 27: 246–253.
PubMed Abstract | Publisher Full Text

Page 40 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

http://www.doi.org/10.5281/zenodo.1402959
https://www.kickstarter.com/projects/1474588473/barbarplots
http://dx.doi.org/10.1111/j.1744-6570.1979.tb02137.x
http://dx.doi.org/10.1201/9781351072304
https://cran.r-project.org/web/packages/beeswarm/beeswarm.pdf
https://harvardforest.fas.harvard.edu/sites/harvardforest.fas.harvard.edu/files/ellison-pubs/1993/ellison_1993.pdf
https://en.wikipedia.org/w/index.php?title=Guess_the_Correlation&oldid=813640982
http://dx.doi.org/10.1080/00031305.1998.10480559
http://dx.doi.org/10.1101/377978
http://dx.doi.org/10.25080/Majora-4af1f417-011
http://dx.doi.org/10.18637/jss.v028.c01
https://micahallen.org/2018/03/15/introducing-raincloud-plots/
https://twitter.com/neuroconscience/status/974366107938193408?lang=en
https://cran.r-project.org/web/packages/ggstatsplot/ggstatsplot.pdf
http://nathanieldphillips.com/2016/04/pirateplot-2-0-the-rdi-plotting-choice-of-r-pirates/
https://pagepiccinini.com/2016/02/23/boxplots-vs-barplots/
http://dx.doi.org/10.1080/10618600.2017.1366914
http://www.ncbi.nlm.nih.gov/pubmed/26594876
http://dx.doi.org/10.1037/xhp0000179
https://books.google.co.in/books?id=BHazAAAAIAAJ&dq=The+Visual+Display+of+Quantitative+Information+%28Reprinted+Ed+edition%29.+1983&focus=searchwithinvolume&q=The+Visual+Display+of+Quantitative+Information+%28Reprinted+Ed+edition%29.+1983
http://www.ncbi.nlm.nih.gov/pubmed/25901488
http://dx.doi.org/10.1371/journal.pbio.1002128
http://www.ncbi.nlm.nih.gov/pmc/articles/4406565
http://dx.doi.org/10.1198/jcgs.2009.07098
http://www.et.bs.ehu.es/cran/web/packages/ggridges/ggridges.pdf
http://www.ncbi.nlm.nih.gov/pubmed/29364874
http://dx.doi.org/10.1038/nature25479
http://www.ncbi.nlm.nih.gov/pubmed/24951943
http://dx.doi.org/10.1016/j.concog.2014.05.012

Open Peer Review
Current Peer Review Status:

Version 1

Reviewer Report 17 April 2019

https://doi.org/10.21956/wellcomeopenres.16574.r35184

© 2019 Allen E. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Elena Allen
Rodin Scientific, LLC, Albuquerque, MN, USA

The authors present a software tool to facilitate the creation of more informative data
visualizations. Specifically, the "raincloud" plot offers accessibility to distributional shape, statistical
summaries, and individual data points. What more could you want? While the ideas underlying the
raincloud aren't novel (and the authors do address violins, boxes, beans, rugs, strips, swarms, and
other predecessors), the paper provides an excellent tutorial for the uninitiated who may be
unfamiliar with better approaches to data visualization. It's one thing to point out the
shortcomings of standard plots and decry, "we need to do better!"; it's quite another to provide a
tool that gets the job done in a few lines of code. I am particularly impressed with the
thoroughness of the code examples and the commitment of the authors to make their tools open
and available to the largest possible audience. Moreover, the inclusion of R, Python, and Matlab
will make almost everyone happy. Folks can get started with their favorite flavor right away. Well
done.

I have only relatively minor comments and suggestions for revision.

1. In the Discussion, I'd like the authors to more fully address the downsides of a raincloud plot
(every plot has them). Yes, you are adding information, but at what cost? Some things that come
to mind: space and ink.

Space is always at a premium in publications and presentations of dense/high-dimensional
datasets. When is the inclusion of a cloud, rain and summary stats justified? How might this
depend on the user's goals in creating the visualization, rather than just the "particularities of
their data". Also, does the separation between groups necessitated by the layout of the raincloud
hamper a human's ability to make comparisons? For two-group comparisons, I've always found
the "asymmetric violin" (e.g., Fig. 4 of Kampstra's Beanplot paper1) to be unmatched in it's ability
to encourage comparison. How does a raincloud compare?

Likewise, it takes a good amount of ink to create clouds; if you've already displayed all the
individual data points and an indication of centrality or statistical uncertainty, does the cloud give

Page 41 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

https://doi.org/10.21956/wellcomeopenres.16574.r35184
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-4969-7844
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-v75-rc1-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-35184-1

you anything new? In some cases it would seem to violate Tufte's guideline for data-ink ratio
minimization. For me, the desired complexity of the visualization and utility of different aspects is
often a function of dataset size. For example, in Figure R10 the clouds are very pretty but I already
knew everything I needed to know from the relatively few data points and boxplots. In fact, one
could argue that there are too few points to support such kernel density estimates. A cloud might
by more appropriate in a mid-size dataset (e.g., Figure R9) where one has difficultly estimating
distributional shape by eye (of course, a simple beeswarm visualization addresses this limitation in
full). When the dataset gets very large the raindrops (as instantiated here) become useless. The
authors do "encourage the user to think carefully about the choice of individual elements", but I'd
like them to go further and identify cases where aspects of the raincloud plot might be more or
less useful.

2. A comment on footnote 1, regarding the widespread use of box plots: while I can fully agree
that bar plots are over- and inappropriately used, the authors (or at least the founders of
#barbarplots) seem to have forgotten that bar plots are an appropriate and intuitive visualization
for counts, proportions, and frequencies, where there is no interesting distributional information
to display and we really just care about how much or how often a thing happened. You could use a
raincloud plot to display, e.g., the proportion of trials that were successful in a task, but this is just
a distribution of 0's and 1's -- your cloud would be an odd one for sure, and the resulting
visualization would be a non-intuitive representation of what you actually care about.

3. A comment on the criticism of violin plots (p. 4) and associated footnote 4: Have the authors
considered that if they centered their cloud PDFs, they would take up just as much ink as a violin?
 I'm not sure "data-ink ratio" can be invoked here. Regarding "overly provocative" violin plots...I
get that it's a funny comic and the authors are in on the joke. But this is a peer-reviewed tutorial
article likely to be targeted at young, diverse scientists and researchers. The authors should hold
themselves to a higher standard and perhaps reflect on the underlying and unintended misogyny
that such a graphic perpetuates. Can violin plots look like vaginas? Sure. Can bar plots look like
dicks? Yeah. Get over it and let's get back to work.

4. A few nit-nats on the tutorial so that the visualizations follow best practices:

In R11 and R12, avoid using a dotted or hashed line to connect repeated measures - it is
very difficult to distinguish those dots from the actual data points in the raindrops.

○

In example M6, yellow has virtually no contrast on white, so we really can't see the
raindrops. A poor choice for color encoding.

○

In the code for example M3, there is an extra apostrophe before d{1} in h1 =
raincloud_plot('d{1}, 'box_on', 1);

○

In all the Matlab examples please label the axes. Axes have been purposefully labeled as
"Group" and "Score", or "Time" and "Group" in R but neglected in Matlab. As someone who
spent a long time characterizing how frequently authors fail to label their variables2, it
makes me cringe to see the same mistake being made in a tutorial.

○

In the code for M9, I would include comments to help readers understand how/why data is
being re-packaged into a cell array. For example:

○

D = dlmread(fullfile(codedir, 'repeated_measures_data.csv'));
% D is a structured as [value, time, group]
% read into cell array of the appropriate dimensions
nGroup = 2;
nTime = 3;

Page 42 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-v75-rc1-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-35184-2

data = cell(nTime, nGroup);
for ii = 1:nTime
 for jj = 1:nGroup
 data{ii, jj} = D(D(:, 2) == ii & D(:, 3) == jj);
 end
end

References
1. Kampstra P: Beanplot: A Boxplot Alternative for Visual Comparison of Distributions. Journal of
Statistical Software. 2008; 28 (Code Snippet 1). Publisher Full Text
2. Allen EA, Erhardt EB, Calhoun VD: Data visualization in the neurosciences: overcoming the curse
of dimensionality.Neuron. 2012; 74 (4): 603-8 PubMed Abstract | Publisher Full Text

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Very experienced in data visualization with Matlab expertise.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 15 April 2019

https://doi.org/10.21956/wellcomeopenres.16574.r35182

© 2019 DeBruine L. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Page 43 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

https://doi.org/10.18637/jss.v028.c01
http://www.ncbi.nlm.nih.gov/pubmed/22632718
https://doi.org/10.1016/j.neuron.2012.05.001
https://doi.org/10.21956/wellcomeopenres.16574.r35182
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Lisa M. DeBruine
Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK

This software tool article clearly describes a challenge (the prevalence of uninformative or
misinformation plots) and presents a flexible solution with a strong logical rationale. Raincloud
plots combine the advantages of box plots for inference, the advantages of distribution plots for
assessing large-scale patterns (e.g., bimodality), and the advantages of scatter plots for assessing
smaller-scale patterns (e.g., ordinality). A particular strength of this tutorial is the flexibility of the
approach; several modular aspects are presented to make it easy to customise plots to fit the
nature of the data, while keeping the presentation consistent enough that readers will be able to
easily orient themselves to slightly different styles.

I am only competent to assess the R tutorial, but it was easy to follow and very thorough. I look
forward to seeing how this paper influences data visualisation in scientific research.

Minor comments

I’m not sure I agree with the “data-to-ink ratio” argument against violin plots. An alternative
perspective is not that they are mirrored density plots, but *centered* density plots. You don’t
really save any ink with a density plot that takes up the same vertical and horizontal space as a
violin plot; likewise, you can save equivalent ink by making the violin plot half it’s original width,
rather than halving it down the middle. A better argument is that the density plot version makes
the y-axis meaningful (although your raincloud plots omit the scale on the y-axis and I doubt many
people use the actual density values).

Code notes

I personally really hate code that installs anything (it’s a violation of my computer). I’d make the
package setup chunk default to eval = FALSE and include a comment to turn it on if they want to
install the missing packages (you can even run the first part and print a message if any packages
are missing). But I guess there is a balance between making code easy for novices to run and best
practices for respecting the user’s computer. I appreciate you taking the time to make sure
installation only happens for uninstalled packages.

In the code chunk “colour_rc” you add trim=FALSE to the flat violin, but don’t mention it and take it
away in the next chunk.

In the chunk “striated” you change the alpha of the violin and point between ap1 and ap2, but
don’t explain why. Minimise irrelevant changes between steps to avoid confusing people and
explain additions (the previous plot had no alpha) to avoid cargo-cult-like behaviour.

Consider making the ggplot code less dense. I’ve put an example of what I mean below. Apart
from that, the R tutorial is really clear and useful!

Example of less dense (more readable) code:

p12 <- ggplot(rep_data, aes(x = group, y = score, fill = time))+
 geom_flat_violin(aes(fill = time),

Page 44 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

http://orcid.org/0000-0002-7523-5539

 position = position_nudge(x = .1, y = 0),
 adjust = 1.5,
 trim = FALSE,
 alpha = .5,
 colour = NA)+
 geom_point(aes(x = as.numeric(group)-.15, y = score, colour = time),
 position = position_jitter(width = .05),
 size = .25,
 shape = 20)+
 geom_boxplot(aes(x = group, y = score, fill = time),
 outlier.shape = NA,
 alpha = .5,
 width = .1,
 colour = "black")+
 geom_line(data = sumrepdat,
 aes(x = as.numeric(group)+.1,
 y = score_mean,
 group = time,
 colour = time),
 linetype = 3)+
 geom_point(data = sumrepdat,
 aes(x = as.numeric(group)+.1,
 y = score_mean,
 group = time,
 colour = time),
 shape = 18)+
 geom_errorbar(data = sumrepdat,
 aes(x = as.numeric(group)+.1,
 y = score_mean,
 group = time,
 colour = time,
 ymin = score_mean-se,
 ymax = score_mean+se),
 width = .05)+
 scale_colour_brewer(palette = "Dark2")+
 scale_fill_brewer(palette = "Dark2")+
 ggtitle("Figure 12: Repeated Measures - Factorial (Extended)")+
 coord_flip()

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?

Page 45 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

Yes

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: I have substantial experience developing teaching materials for R stats,
including ggplot.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Comments on this article
Version 2

Reader Comment 13 Jun 2022
Roi Maor, Zoological Society of London / University College London, London, UK

Dear authors,

thank you for developing this excellent package and making it broadly available.

I would like to draw your attention to this StackOverflow post, where I describe a possible bug in
the Raincloud plot function from your recent paper:
https://stackoverflow.com/questions/72553004/distribution-curves-in-ggplot2-raincloud-plot-
display-incorrectly

Perhaps you could you could help me understand what's happening there?

I'm be very happy to provide more details if the post is not clear enough.

Best wishes,
Roi Maor

Competing Interests: none

Page 46 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

https://stackoverflow.com/questions/72553004/distribution-curves-in-ggplot2-raincloud-plot-display-incorrectly
https://stackoverflow.com/questions/72553004/distribution-curves-in-ggplot2-raincloud-plot-display-incorrectly

Reader Comment 24 Jul 2021
Pierre-Yves de Müllenheim, Institute of Physical Education and Sports Sciences (IFEPSA), Les
Ponts-de-Cé, France

Dear authors,

Thank you for your very interesting paper. I wanted to point out that in Figure R12 (p.14), I am not
sure that showing lines that link the group means it is fully correct. To my opinion, such lines
should allow for tracking a given group mean across different conditions, but in Figure R12, the
lines link means of distinct groups. Maybe it is a matter of taste (this was misleading for me) but if
you did not deliberately do it, it could be interesting for future readers to remove these lines.

Thanks again for all materials you made freely available.

Pierre-Yves de Müllenheim

Competing Interests: No competing interests were disclosed.

Version 1

Author Response 20 Dec 2020
Rogier Kievit

We thank both reviewer for their comments, and we apologise for the considerable delay (due to global
circumstances causing considerable disruption) in implementing the valuable suggestions they made.
We will respond to both reviewers here in two separate comments for ease of use. Below our
responses to reviewer 2:

REV 2
The authors present a software tool to facilitate the creation of more informative data
visualizations. Specifically, the "raincloud" plot offers accessibility to distributional shape, statistical
summaries, and individual data points. What more could you want? While the ideas underlying the
raincloud aren't novel (and the authors do address violins, boxes, beans, rugs, strips, swarms, and
other predecessors), the paper provides an excellent tutorial for the uninitiated who may be
unfamiliar with better approaches to data visualization. It's one thing to point out the
shortcomings of standard plots and decry, "we need to do better!"; it's quite another to provide a
tool that gets the job done in a few lines of code. I am particularly impressed with the
thoroughness of the code examples and the commitment of the authors to make their tools open
and available to the largest possible audience. Moreover, the inclusion of R, Python, and Matlab will
make almost everyone happy. Folks can get started with their favorite flavor right away. Well done.

We thank the reviewer for their comments

Page 47 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

I have only relatively minor comments and suggestions for revision.

1. In the Discussion, I'd like the authors to more fully address the downsides of a raincloud plot
(every plot has them). Yes, you are adding information, but at what cost? Some things that come to
mind: space and ink. Space is always at a premium in publications and presentations of
dense/high-dimensional datasets. When is the inclusion of a cloud, rain and summary stats
justified? How might this depend on the user's goals in creating the visualization, rather than just
the "particularities of their data". Also, does the separation between groups necessitated by the
layout of the raincloud hamper a human's ability to make comparisons? For two-group
comparisons, I've always found the "asymmetric violin" (e.g., Fig. 4 of Kampstra's Beanplot paper1)
to be unmatched in it's ability to encourage comparison. How does a raincloud compare? Likewise,
it takes a good amount of ink to create clouds; if you've already displayed all the individual data
points and an indication of centrality or statistical uncertainty, does the cloud give you anything
new? In some cases it would seem to violate Tufte's guideline for data-ink ratio minimization. For
me, the desired complexity of the visualization and utility of different aspects is often a function of
dataset size. For example, in Figure R10 the clouds are very pretty but I already knew everything I
needed to know from the relatively few data points and boxplots. In fact, one could argue that
there are too few points to support such kernel density estimates. A cloud might by more
appropriate in a mid-size dataset (e.g., Figure R9) where one has difficultly estimating distributional
shape by eye (of course, a simple beeswarm visualization addresses this limitation in full). When
the dataset gets very large the raindrops (as instantiated here) become useless. The authors do
"encourage the user to think carefully about the choice of individual elements", but I'd like them to
go further and identify cases where aspects of the raincloud plot might be more or less useful.

We have included a new section to ensure our paper is not misread as implying rainclouds are always
best, and included two concrete examples when they likely are not ideal:

'Moreover, there are likely settings where rainclouds may not necessarily be ideal, such as when there is
an extreme number of (repeated measures) datapoints, or a large number of waves, that render the
points or density plots confusing rather than illuminating. Conversely, there are settings such as simple
counts, proportions, and frequencies when oft-dreaded barplots may be adequate tools. No data
visualization tool will be ideal for all settings, but we think raincloudplots are a new, flexible tool that
could be considered in many common scenarios.'

2. A comment on footnote 1, regarding the widespread use of box plots: while I can fully agree that
bar plots are over- and inappropriately used, the authors (or at least the founders of #barbarplots)
seem to have forgotten that bar plots are an appropriate and intuitive visualization for counts,
proportions, and frequencies, where there is no interesting distributional information to display
and we really just care about how much or how often a thing happened. You could use a raincloud
plot to display, e.g., the proportion of trials that were successful in a task, but this is just a
distribution of 0's and 1's -- your cloud would be an odd one for sure, and the resulting
visualization would be a non-intuitive representation of what you actually care about.

This is an excellent point. We have clarified our section on the drawbacks of barplots to be less of a
strawperson in the section above;

Page 48 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

https://wellcomeopenresearch.org/articles/4-63#rep-ref-35184-1

'Moreover, there are likely settings where rainclouds may not necessarily be ideal, such as when there is
an extreme number of (repeated measures) datapoints, or a large number of waves, that render the
points or density plots confusing rather than illuminating. Conversely, there are settings such as simple
counts, proportions, and frequencies when oft-dreaded barplots may be adequate tools. No data
visualization tool will be ideal for all settings, but we think raincloudplots are a new, flexible tool that
could be considered in many common scenarios.'

3. A comment on the criticism of violin plots (p. 4) and associated footnote 4: Have the authors
considered that if they centered their cloud PDFs, they would take up just as much ink as a violin?
 I'm not sure "data-ink ratio" can be invoked here. Regarding "overly provocative" violin plots...I get
that it's a funny comic and the authors are in on the joke. But this is a peer-reviewed tutorial article
likely to be targeted at young, diverse scientists and researchers. The authors should hold
themselves to a higher standard and perhaps reflect on the underlying and unintended misogyny
that such a graphic perpetuates. Can violin plots look like vaginas? Sure. Can bar plots look like
dicks? Yeah. Get over it and let's get back to work.

We thank the reviewer for their comment. On reflection, we agree entirely, and have removed the
reference.

4. A few nit-nats on the tutorial so that the visualizations follow best practices:

In R11 and R12, avoid using a dotted or hashed line to connect repeated measures - it is very
difficult to distinguish those dots from the actual data points in the raindrops.

•

Agreed, now updated to a solid line. Moreover, the new package excels at repeated measures
visualisation

In example M6, yellow has virtually no contrast on white, so we really can't see the
raindrops. A poor choice for color encoding.

•

Now fixed

In the code for example M3, there is an extra apostrophe before d{1} in h1 =
raincloud_plot('d{1}, 'box_on', 1); In all the Matlab examples please label the axes. Axes have
been purposefully labeled as "Group" and "Score", or "Time" and "Group" in R but neglected
in Matlab. As someone who spent a long time characterizing how frequently authors fail to
label their variables2, it makes me cringe to see the same mistake being made in a tutorial.

•

All valid points – now fixed

Competing Interests: No competing interests were disclosed.

Page 49 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

https://wellcomeopenresearch.org/articles/4-63#rep-ref-35184-2

Author Response 20 Dec 2020
Rogier Kievit

We thank both reviewer for their comments, and we apologise for the considerable delay (due to global
circumstances causing considerable disruption) in implementing the valuable suggestions they made.
We will respond to both reviewers here in two separate comments for ease of use.

A particular strength of this tutorial is the flexibility of the approach; several modular aspects are
presented to make it easy to customise plots to fit the nature of the data, while keeping the
presentation consistent enough that readers will be able to easily orient themselves to slightly
different styles. I am only competent to assess the R tutorial, but it was easy to follow and very
thorough. I look forward to seeing how this paper influences data visualisation in scientific
research.

We are glad the reviewer found this approach useful. Thanks to repeated calls to create a package, we
have now expanded the tutorial to include a novel, tailored raincloudplots package. A tutorial on how to
install and use can be found here: https://github.com/jorvlan/raincloudplots
It will make the creation of raincloudplots easy even for those with modest R experience – However, we
have left in place the step by step tutorial. This gives users the option to go down either route. Moreover,
based on user feedback, we have expanded and improved details in the python – and Matlab
implementations.

Minor comments

I’m not sure I agree with the “data-to-ink ratio” argument against violin plots. An alternative
perspective is not that they are mirrored density plots, but *centered* density plots. You don’t
really save any ink with a density plot that takes up the same vertical and horizontal space as a
violin plot; likewise, you can save equivalent ink by making the violin plot half it’s original width,
rather than halving it down the middle. A better argument is that the density plot version makes
the y-axis meaningful (although your raincloud plots omit the scale on
the y-axis and I doubt many people use the actual density values).

On reflection we agree – We have removed the initial reference to ink use as one can have reasonable
disagreements (and the implied ‘cost’ of ink is of course less relevant). We have decreased the strength of
the claim later, modifying from ‘there is nothing to be gained’ to ‘there is arguably little to be gained,’

Code notes

I personally really hate code that installs anything (it’s a violation of my computer). I’d make the
package setup chunk default to eval = FALSE and include a comment to turn it on if they want to
install the missing packages (you can even run the first part and print a message if any packages
are missing). But I guess there is a balance between making code easy for novices to run and best
practices for respecting the user’s computer. I appreciate you taking the time to make sure
installation only happens for uninstalled packages.

Page 50 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

https://github.com/jorvlan/raincloudplots

We are aware of this tradeoff and agree with the basic principle here. In practice we have found that
many novice users value this suboptimal practice. To abide by best practices we have commented any
lines pertaining to installs, alllowing the researcher to run the code intentionally if desired.

In the code chunk “colour_rc” you add trim=FALSE to the flat violin, but don’t mention it and take it
away in the next chunk.
Noted, now removed

In the chunk “striated” you change the alpha of the violin and point between ap1 and ap2, but don’t
explain why. Minimise irrelevant changes between steps to avoid confusing people and explain
additions (the previous plot had no alpha) to avoid cargo-cult-like behaviour.
Noted, now changed to be equal

Consider making the ggplot code less dense. I’ve put an example of what I mean below. Apart from
that, the R tutorial is really clear and useful!

We agree that there are benefits to the less dense implementation of code. However, given the widescale
uptake of the current tutorials, we felt it best to leave these as close to the original formatting as
possible. However, to address these comments we now include links and references to a new R package
complete with more clean, compact ggplot examples.

Competing Interests: No competing interests were disclosed.

Reader Comment 14 Oct 2019
Hilmar Brohmer, Social Psychology, Institute of Psychology, University of Graz, Graz, Austria

Dear authors,

Thank you for these highly informative plots that hopefully - at some point - supersede
conventional bar plots.

However, I have a suggestion regarding the jitter (i.e., the "rain"): I think jittered data can be
deceiving because one tends to interpret the position of the dots in the figure, although the
position is random in two dimensions. This could be especially problematic for extreme cases that
could then look like outliers.

I might have three solutions how to treat the dots alternatively. 1) One could use stacked dot plots
(Figure 2b) as "rain" in combination with a "cloud". However, because both rain and clouds might
look somewhat similar, one could criticize that this plot might bear some redundance. 2) One could
use overlapping dot plots similar to Figure R8 A or P3. In this kind of plot, transparency of the dots
would be required so that an overlap of the dots (i.e., higher concentration of data) creates more
intense / darker colors. On the downside, one cannot see easily, if there are 50 or 500 pp in the
data because all the dots are on one line. 3) One could only jitter the dots in one dimension. For
instance in Figure M9 (which I like most), one could jitter the rain only horizontally to some degree

Page 51 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

and keep the transparency of it. That way, data points would be vertically always on the "right"
position and one would still get a good overview of the individual data.

I don't know if this idea is possible to implement easily, but it would certainly help.

Thank you and kind regards,

Hilmar Brohmer

Competing Interests: none

Page 52 of 52

Wellcome Open Research 2021, 4:63 Last updated: 18 SEP 2023

